Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biol Rev Camb Philos Soc ; 98(5): 1530-1547, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37072921

RESUMEN

Urban ecology is a rapidly growing research field that has to keep pace with the pressing need to tackle the sustainability crisis. As an inherently multi-disciplinary field with close ties to practitioners and administrators, research synthesis and knowledge transfer between those different stakeholders is crucial. Knowledge maps can enhance knowledge transfer and provide orientation to researchers as well as practitioners. A promising option for developing such knowledge maps is to create hypothesis networks, which structure existing hypotheses and aggregate them according to topics and research aims. Combining expert knowledge with information from the literature, we here identify 62 research hypotheses used in urban ecology and link them in such a network. Our network clusters hypotheses into four distinct themes: (i) Urban species traits & evolution, (ii) Urban biotic communities, (iii) Urban habitats and (iv) Urban ecosystems. We discuss the potentials and limitations of this approach. All information is openly provided as part of an extendable Wikidata project, and we invite researchers, practitioners and others interested in urban ecology to contribute additional hypotheses, as well as comment and add to the existing ones. The hypothesis network and Wikidata project form a first step towards a knowledge base for urban ecology, which can be expanded and curated to benefit both practitioners and researchers.


Asunto(s)
Ecología , Ecosistema , Biota , Fenotipo
2.
Ecol Evol ; 12(11): e9458, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36381394

RESUMEN

Agriculture is a leading cause of biodiversity loss and significantly impacts freshwater biodiversity through many stressors acting locally and on the landscape scale. The individual effects of these numerous stressors are often difficult to disentangle and quantify, as they might have nonlinear impacts on biodiversity. Within agroecosystems, ponds are biodiversity hotspots providing habitat for many freshwater species and resting or feeding places for terrestrial organisms. Ponds are strongly influenced by their terrestrial surroundings, and understanding the determinants of biodiversity in agricultural landscapes remains difficult but crucial for improving conservation policies and actions. We aimed to identify the main effects of environmental and spatial variables on α-, ß-, and γ-diversities of macroinvertebrate communities inhabiting ponds (n = 42) in an agricultural landscape in the Northeast Germany, and to quantify the respective roles of taxonomic turnover and nestedness in the pondscape. We disentangled the nonlinear effects of a wide range of environmental and spatial variables on macroinvertebrate α- and ß-biodiversity. Our results show that α-diversity is impaired by eutrophication (phosphate and nitrogen) and that overshaded ponds support impoverished macroinvertebrate biota. The share of arable land in the ponds' surroundings decreases ß-diversity (i.e., dissimilarity in community), while ß-diversity is higher in shallower ponds. Moreover, we found that ß-diversity is mainly driven by taxonomic turnover and that ponds embedded in arable fields support local and regional diversity. Our findings highlight the importance of such ponds for supporting biodiversity, identify the main stressors related to human activities (eutrophication), and emphasize the need for a large number of ponds in the landscape to conserve biodiversity. Small freshwater systems in agricultural landscapes challenge us to compromise between human demands and nature conservation worldwide. Identifying and quantifying the effects of environmental variables on biodiversity inhabiting those ecosystems can help address threats impacting freshwater life with more effective management of pondscapes.

3.
Ecol Evol ; 12(9): e9259, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36177125

RESUMEN

One of the most challenging endeavors for students is choosing a career path that best fits their interests, wills and skills, and setting their professional goals accordingly. Such decisions are often made from within the culture of academia, in which mentors and peers are mainly familiar with the academic job market and lack the knowledge necessary to consult about other types of careers. We aimed to address this gap for ecology and related fields by creating an engaging and effective tool to help students and professionals to familiarize themselves with the diversity of potential career paths available to ecologists. The tool is an applied card game - the Ecologist's Career Compass - which is provided here freely. The game is played as a trump card game and includes 33 cards, each representing a combination of one of four job-market sectors and one of nine types of positions. Each card indicates the level of seven skill categories required to likely be hired and succeed in the focal position at the focal sector, as well as more specific examples for typical jobs in the focal combination. The information in the game largely relies on input from a global survey we conducted among 315 ecologists from 35 countries. While the challenges faced by early-career ecologists in developing their professional path are substantial and diverse, this game can assist in gaining a broad comparative overview of the whole ecology job market and the skills required to likely excel in different paths. We hope this applied game will act as a conversation starter about the diversity of aspirations and opportunities in ecology classrooms and labs.

4.
Mol Ecol ; 31(6): 1716-1734, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35028982

RESUMEN

Changes in land use and agricultural intensification threaten biodiversity and ecosystem functioning of small water bodies. We studied 67 kettle holes (KH) in an agricultural landscape in northeastern Germany using landscape-scale metatranscriptomics to understand the responses of active bacterial, archaeal and eukaryotic communities to land-use type. These KH are proxies of the millions of small standing water bodies of glacial origin spread across the northern hemisphere. Like other landscapes in Europe, the study area has been used for intensive agriculture since the 1950s. In contrast to a parallel environmental DNA study that suggests the homogenization of biodiversity across KH, conceivably resulting from long-lasting intensive agriculture, land-use type affected the structure of the active KH communities during spring crop fertilization, but not a month later. This effect was more pronounced for eukaryotes than for bacteria. In contrast, gene expression patterns did not differ between months or across land-use types, suggesting a high degree of functional redundancy across the KH communities. Variability in gene expression was best explained by active bacterial and eukaryotic community structures, suggesting that these changes in functioning are primarily driven by interactions between organisms. Our results indicate that influences of the surrounding landscape result in temporary changes in the activity of different community members. Thus, even in KH where biodiversity has been homogenized, communities continue to respond to land management. This potential needs to be considered when developing sustainable management options for restoration purposes and for successful mitigation of further biodiversity loss in agricultural landscapes.


Asunto(s)
Ecosistema , Estanques , Agricultura/métodos , Archaea/genética , Biodiversidad
5.
J Plankton Res ; 43(3): 396-412, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34084088

RESUMEN

Understanding the influence of environmental and spatial factors on the structure of aquatic communities remains a major challenge in community ecology. This study aims to identify main drivers of rotifer abundance and diversity in ponds embedded in an intensive agricultural landscape in Northeast Germany. We studied 42 ponds of glacial origin (kettle holes) covering a wide range of environmental parameters. The predominant factors structuring the rotifer metacommunity shifted from abiotic environmental filtering in spring to unstudied factors in autumn, while spatial factors remained less important. Fertilizer-driven salinization, internal nutrient recycling, primary productivity and sediment phosphorus release were the prevalent biogeochemical processes in the ponds. Both fertilizer-driven salinization and primary productivity negatively affected rotifer alpha diversity, and positively affected beta diversity. This impact was lower in forest ponds than in those surrounded by arable fields or grassland. However, rotifer diversity did not significantly differ among land-use categories. Our results indicate that the long-term impact of intensive agriculture in the region and the associated widespread eutrophication overrides the direct influence of land use on rotifer diversity but point to an indirect effect via fertilizer-driven salinization. Furthermore, this study highlights the role of ponds in enhancing regional biodiversity in agricultural landscapes.

6.
Glob Ecol Biogeogr ; 29(6): 978-991, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34938151

RESUMEN

BACKGROUND AND AIMS: Since its emergence in the mid-20th century, invasion biology has matured into a productive research field addressing questions of fundamental and applied importance. Not only has the number of empirical studies increased through time, but also has the number of competing, overlapping and, in some cases, contradictory hypotheses about biological invasions. To make these contradictions and redundancies explicit, and to gain insight into the field's current theoretical structure, we developed and applied a Delphi approach to create a consensus network of 39 existing invasion hypotheses. RESULTS: The resulting network was analysed with a link-clustering algorithm that revealed five concept clusters (resource availability, biotic interaction, propagule, trait and Darwin's clusters) representing complementary areas in the theory of invasion biology. The network also displays hypotheses that link two or more clusters, called connecting hypotheses, which are important in determining network structure. The network indicates hypotheses that are logically linked either positively (77 connections of support) or negatively (that is, they contradict each other; 6 connections). SIGNIFICANCE: The network visually synthesizes how invasion biology's predominant hypotheses are conceptually related to each other, and thus, reveals an emergent structure - a conceptual map - that can serve as a navigation tool for scholars, practitioners and students, both inside and outside of the field of invasion biology, and guide the development of a more coherent foundation of theory. Additionally, the outlined approach can be more widely applied to create a conceptual map for the larger fields of ecology and biogeography.

8.
J Anim Ecol ; 89(3): 921-932, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31758696

RESUMEN

Intraspecific trait variability (ITV) maintains functional diversity in populations and communities, and plays a crucial role in ecological and evolutionary processes such as trophic cascades or speciation. Furthermore, functional variation within a species and its populations can help buffer against harmful environmental changes. Trait variability within species can be observed from differences among populations, and between- and within individuals. In animals, ITV can be driven by ontogeny, the environment in which populations live and by within-individual specialization or variation unrelated to growth. However, we still know little about the relative strength of these drivers in determining ITV variation in natural populations. Here, we aimed to (a) measure the relative strength of between- and within-individual effects of body size on ITV over time, and (b) disentangle the trophic changes due to ontogeny from other sources of variability, such as the environment experienced by populations and individual preferences at varying temporal and spatial scales. We used as a model system the endangered marble trout Salmo marmoratus, a freshwater fish living in a restricted geographical area (<900 km2 ) that shows marked changes in diet through ontogeny. We investigated two trophic traits, trophic position and resource use, with stable isotopes (δ15 N and δ13 C), and followed over time 238 individually tagged marble trout from six populations to estimate the trophic changes between and within individuals through ontogeny at three different time-scales (short term: 3 months, medium term: 1 year and long term: 2 years). We found that the relative strength of between- and within-individual effects of body size on trophic position and resource use change strongly over time. Both effects played a similar role in ITV over medium- and long-term time-scales, but within-individual effects were significantly driving trophic variability over short-term scales. Apart from ontogenetic shifts, individuals showed variability in trophic traits as big as the variability estimated between populations. Overall, our results show how the relative strengths of ITV drivers change over time. This study evidences the crucial importance of considering effects of time-scales on functional variability at individual, population and species levels.


Asunto(s)
Ambiente , Trucha , Animales , Evolución Biológica , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...